Telegram Group & Telegram Channel
Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра



tg-me.com/ds_interview_lib/261
Create:
Last Update:

Какова связь между собственными значениями и собственными векторами в PCA (методе главных компонент)?

В PCA собственные значения и собственные векторы играют ключевую роль в преобразовании исходных данных в новую систему координат.

🔹Собственные значения — связаны с каждым собственным вектором и представляют собой величину дисперсии данных вдоль соответствующего собственного вектора.
🔹Собственные векторы — это направления или оси в исходном пространстве признаков, вдоль которых данные изменяются сильнее всего или проявляют наибольшую дисперсию.

Связь между ними определяется как:

A*V = lambda*V, где
A = ковариационная матрица, полученная из исходной матрицы признаков
V = собственный вектор
lambda = собственное значение.

Большее собственное значение означает, что соответствующий собственный вектор захватывает больше дисперсии в данных. Сумма всех собственных значений равна общей дисперсии в исходных данных. Следовательно, долю общей дисперсии, объясняемую каждой главной компонентой, можно вычислить, разделив её собственное значение на сумму всех собственных значений.

#машинное_обучение
#линейная_алгебра

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/261

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA